

A Path Finding Based SI Design Methodology for 3D Integration Post Paper using 3DPF V3.0

Post Paper Test Cases using V3.0

Enable analysis with TSV/Planar metal and modeling TSV versus microvia

Example 4: small 0.25mm² area silicon interposer

 Analyze considerable coupling in spite of ground shield. Ground shield is in the form of grounded TSVs

Responses: small 0.25mm² area silicon interposer

RDL for this structure has minimal IL degradation since they are routed above or below silicon substrate, while TSV/RDL paths have ~14X worse IL

Coupling

In spite of the ground shield using multiple TSVs, the coupling can still be high. In this example the coupling is between -24 to -48 dB.

Example 5: Chip-to-Chip with Interposer (SI/PI analysis)

Analyze the coupling between signal and power distribution

Responses: Chip-to-Chip with Interposer (SI analysis)

Responses: Chip-to-Chip with Interposer (PI analysis)

Example 6: Tapered TSV with RDL

Analyze effect of tapered TSV, RDL, microvias and pads on insertion loss and coupling for a single IC

Responses: Tapered TSV with RDL

Insertion Loss

Intentionally left blank

Example 7: Two Chip Stack

Analyze impact of stacking 2 IC blocks with TSV and solder bumps: Insertion loss and Xtalk

Responses: Two Chip Stack

Insertion Loss

Coupling between Lines

Example 8: RDL/Via transition

Analyze: IL and Xtalk for short RDL and via transitions

Responses: RDL/Via transition

Example 9: Unshielded lines in Si Interposer (no TSVs)

Analyze: Insertion and Return Losses for GSG structure

Responses: Unshielded lines in Si Interposer (no TSVs)

Example 10: Unshielded lines in Si Interposer

Analyze: Impact of Si Conductivity on Insertion Loss?

Responses: Unshielded lines in Si Interposer

Improved Insertion Loss with decreasing conductivity

Example 11: Unshielded versus Shielded lines in Si Interposer

Compare performance of shielded and unshielded lines (SGS) in Si Interposer

Responses: Unshielded versus Shielded lines in Si Interposer

Shielded improves Insertion Loss by ~2dB Lower DC resistance for Shielded

www.PosterPresentations.c